
I Wrote an FFV1 Decoder in Go for Fun:

What I Learned Going from Spec to Implementation

derek@videolan.org

@daemon404

Derek Buitenhuis

5 December 2019

Budapest, Hungary

NTTW4



But… why?

15 December 2019

• Because why not?

• It seemed fun.

• I wanted to see how hard it was to write something while trying not to use anything but a spec.

• Why? How do you spend your weekends? This is normal.

• But mostly: To make the spec better and aid in adoption of free and open codecs and standards.

• More implementations means a better spec.

• Doing it while trying not to reference anything else would expose anything missing or confusing.

NTTW4



You’ll end up reading sections out-of-order 
and multiple times

25 December 2019 NTTW4

• Specs are not written in the order you actually have to perform

the steps in, or the order you’ll write them in.

• A second monitor really helps with all the back-and-forth

referencing between your code and the spec.

• Pseudo-code in one section will use variables defined in

other sections / scopes.



Third party implementation is important!

35 December 2019 NTTW4

• There can be many things missing or unclear in a spec until at least one non-author implements it.

• Things that may be obvious or clear to the author

may not be to everyone else.

• The end result is a much more robust, tested spec.



Having background and context in the spec 
is extremely useful.

45 December 2019 NTTW4

• Not many ‘professional’ specs have context or background in them, so why something is the

way it is, or important implementation consequences may not be obvious.

• The FFV1 spec has lots of background, and it came in very useful.



Having contact with the spec author(s) is 
extremely useful.

55 December 2019 NTTW4

• It’s good to confirm you’re not going crazy trying to figure

something out.

• Lean on the knowledge of those who came before you.



Writing a spec based on an existing 
codebase makes for “interesting” specs

65 December 2019 NTTW4

• Lots of the spec bugs I found were assumptions based on FFmpeg’s encoder or

decoder behavior.

• Annoying implications like requiring 17-bit buffers for predicting 16-bit RGB, which are

not spelled out in the spec at all. I hit this right as I finished up.

• On the flip side, the spec also had advice for how to multithread based off of the slice

footers, and other real-world tips.



A bunch of LaTeX math and a paper reference 
alone aren’t as good as pseudocode

75 December 2019 NTTW4

• Looking at you range coder.

• Paper was OK, but implementation details were annoying.

• Not gonna lie, I based my implementation off of Wikipedia + FFV1 spec constants.



Some Quick Notes on the Code

85 December 2019 NTTW4

• Not exactly idiomatic Go, in order to remain as close as possible to the spec.

• Goal is be a good reference.

• Everything is annotated with references to

spec sections.

• I used a bit of Perl for code generation…



Links

95 December 2019 NTTW4

• FFV1 Go Implementation: https://github.com/dwbuiten/go-ffv1

• godoc: https://godoc.org/github.com/dwbuiten/go-ffv1/ffv1

• Simple Matroska Go Package: https://github.com/dwbuiten/matroska

• godoc: https://godoc.org/github.com/dwbuiten/matroska

• FFV1 Spec: https://tools.ietf.org/id/draft-ietf-cellar-ffv1-10.html

• FFV1 Repo: https://github.com/FFmpeg/FFV1/

https://github.com/dwbuiten/go-ffv1
https://godoc.org/github.com/dwbuiten/go-ffv1/ffv1
https://github.com/dwbuiten/matroska
https://godoc.org/github.com/dwbuiten/matroska
https://tools.ietf.org/id/draft-ietf-cellar-ffv1-10.html
https://github.com/FFmpeg/FFV1/


105 December 2019 NTTW4

Questions?


